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IN HOVERING

OF HELICOPTER BLADES WITH INCLINED AMD OFFSET

FTA.PPINGAND LAGGING HUGE AXES

By M. Morduchw and F.

SUMMARY

G. Hinchey

The frequency and ikuqpingch~acteristics of the coupled flapping
and lagging oscillations of helicopter blades in hovering are derived
for the general case in which the lagging (vertical.)hinge axis is off-
set from the flapping hinge axis, while both hinge axes are inclined.
An offset of the flapping hinge axis from tie rotor axis of rotation is
also considered. An inclination of the hinge axes causes pitch change
of a blade section due to angular displacements about these axes. It
is found from this analysis that an inclination of the flapping hinge
axis chiefly affects th~ values of the natural flapping frequencies and
the damping factors of the l&gging motion of a blade. An inclination
of the lagging hinge axis, which causes considerable flapping motion
during the lagging oscillations, mainly affects the natural frequencies
and dampi+g factors in lagging. The aualysis and the numerical examples
worked out here indicate that signific!antincreases in the damping ,of
the lagging motions, which ordinarily border on instability, can be
obtained by suitable inclinations of the hinge axes, especially of the
lagging axis. Offsetting the flapping and lagging hinge axes tends
especially to increase the natural lagging’frequency.

INTRODUCTION

The aim of this investigation is to determine theoretically the
characteristics of the rigid-body oscillations of helicopter rotor

‘ blades with inclined and offset flapping {horizontal) and lagging
(vertical) hinge axes. For this p~ose a sim@e method which requires ‘
the solution of a fourth-degree algebraic equation .forobtainipg the ~
natural frequencies and damping decrements of the small coupled flapping
and lagging oscillations of a blade in hovering about a state of static
equilibrium is developed here.- Approximate formulas for these charac-
teristics, based on.the quartic equation, are, moreover, given.
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The
Lagrange
rotation
inclined
from the

equations of motion of a bl~e are derived bymeens of the
equations for a system having two degrees of freedom,,nmely,
abuut an inclined lagging hinge axis and rotation about an
flapping hinge axis. The flapping axis is assumed as offset
rotor axis of rotation, while the lag-g L=iS’iS ~h=

assumed as offset frmn the fla~ing axis. The aerodynamic loads in
hovering are derived here on the basis of quasi-stationaryflow, with
the assumption of constant downwash throughout the rotor disk.

Basically, the effect of inclining either hinge exis’is to create
a kinematic relation between flapping or lagging and change of pitch of
a blade section. This kinematic relation is of the form e = f(p,g),
where e, ~, and ~ are, respectively, the pitch, flapping, and lagging
angles. It maybe noted that, ‘slthoughthe effects of seversl kinematic
constraints have already been defived in reference 1, the condition
mentioned above has not been explicitly investigated there. Since the
aerodynamic loads ti hovering are largely functions of the blade, or
pitch, angle, it follows that in the present analysis the effect of
inclination of the hinge axes appears essentially in the resulting
effect on the aerodynamic loads caused by the changes in blade angle.

The analysis is divided into three pections. In the first section
the explicit equations of motion of a blade are derived. The equations,
and their solutions, determining the steady-state (static in hovering)
values of flapping> lagging, end blade.sngles are included here.

.
In.the second section the dynamic equations are solved in general

terms for the frequency and damping characteristics of the oscillations
of a blade. Coupling between flapping and lagging, which becomes espe-
cially large when the lagging hme axis is.incliqed, is taken tito
account. In addition to the development of a straightforwardexact
procedure, and e~licit approximate solutions, for the natural.frequen-
cies and damping decrements of the oscillations, stability criterions
are given. For sny given data, these stability criterions, as well as
the e@icit equations for the details of the oscillation characteristics,
can be readily applied. General confusions regarding the effect of incli-
nation end offset of the hinge axes are derived from the genersl solutions
obtained.

the
the

In the final section numericsl exsmples are worked out to illustrate
general conclusions reached as well as the method of application of
genersl solutions developed here.

This investigationhas been part of a project carried out at the
Polytechnic Insti&te of Brooldyn under the sponsorship
fin&icisl assistance of the National Advisory Committee

“

end with the ‘
for Aeronautics.
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SYMBOLS

smplitude of flapping snd lagging oscillations,
respectively

coefficients of quartic equation (26a), defined
equations (26b)

profile-drag coefficient “ofblade section

chord length of blade section

value of c of tiermost blade section

by

distauce of flapping hinge exis frm axis of rotation;
flapping hinge eccentricity (fig. 1)

distance of lagging hinge axis from flapping hinge
axis; legging hinge eccentricity (fig. 1)

section.profile drag per unit length of blade

*ag load components in x-, y-, and z-directions,
respectively

.
dimensionless.definite integrals definedbyequa-
tions ($3.b)

acceleration due to

lift loads based on

.

gravity

.

quasi-stationaryflow

dimensionless definite integrals definedby equa-
tions (21b)

lift load components pe~ unit blade length in x-, y-,
and z-directions, respectively

length of blade measured frmn lagging hinge axis

—. - .—— - -—. - —.—— —., —- ~-------- —“-’T———
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Qi --

~,Q(

qfJq; .

. .

qfo’qzo

%1’qzl
\

R

r

s

mass per unit length of blade

value of m at innermost blade section

number of rotor blades

complex frequency; if I = Q(:R * b) (R and u real), .
then u@2fi is the natural frequency in cycles
per second, while 2iR/m is the logarithmic decrement

. unit weight loads of blade in z-direction

aerodyi.emitplus weight
act~ ~ x-, y-, and

generalized force

loads pqr unit blade length
z-directions, respective y

..“

generalized forces corresponding to generalized
coo+ates P ~d L .

&hnensionless complex ftiquency ,(p/$1)

. generalized coordinate

dimensionless flapping and lagging complex frequencies,
respectively .

dimensionless uncbupled flappipg and lagghg complex
frequencies, respectively

first apprmdmation to dimensionless coupled flapping
and lagging complex frequencies, respectively ,
(equations (28) and (30))

tip radius of blade

distance of &ny point on blade froh axis z of ‘
rotat-ion

/

. coordinate along blade sxis measured from lagging
hinge o

value of s for innermost

kinetic ener~ of system

‘thle

vector of resultant inflow

blade section

.

velocity

“

,,

f .
.
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v~

Vx>vy,vz

W

Wi

X,Y,Z

X,y,z

+= jr+ (S2r)y

%

5
I

resultant inflow velocity in plane of blade section

components of resultant infl~ velocity in hovering
at any point of blade

,

gross weight of helicopter .,

induced downwash

(J

forces aiong axes of rotor system” X = .

~ Y= J’’pyw;z=~pz+ ~ ‘~ti’

,,

rotating right-handed Cartesieincoordinate system in
which z is axis of rotation and x coincides with
undeflected longitud@sl blade axis (figs. 1 and 2)

J

_itide of angular displacement about inclined
flapping hinge exis

component of 13~ about a horizont&. axis,(AE in fig. 1)
normai to deflected blade axis (OC)

deviations of j3 snd , ~ from steady-stateposition

steady-state values of j3,.~, and 8, respectively

circulation vector . #

inclination of lagging (vertical) hinge axis measured
from a line parallei to z-axis.(see fig.
when positive lagging (i.e., retreating)
decrease in blade angle”

inclination of flapping (horizontal.)hinge
from a Une parallel to y-axis (see fig.

2), positive
produces a

axis measured
1), positive

when positive flapping produces a decrease in blade
angle

... .--.<. . . .... . -. —-------. .-— . .. .. -. . . ..- —.— —---- .. .--.—— --- -—. —--— -- --
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e2 = e2/1

c~ _itide of mar displacement about inclined
lagging hinge axis

c component of (~ about an axis (C)Din fig. 2) parallel

to z-axis (see fig..l)

e total pitch, or blade, angle of blade section titer
flapping and lagging deflections

b
eO design, or initisl, blade angle - ,

(Ae)~ change of pitch
hinge axis

(A@2 change of pil%h
hinge axis.

E = s/1

El = ‘l/z

P den”sit’yof air

due to rotation Lb about lagging

due to rotation ~ about flapping

@’ angle between x-axis and radius of a point on blade to
z-axis

Q -- v~ocity of rotor systeh

(m)x, (SW)y components of linear rotational velocity of blade in
x- and y-directions, respectively

o natural frequency of oscillation of rotating blade

BASIC EQUATIONS

The basic equations
flapping and lagging are

Coordinate system.-

of motion of a
derived here.

A right-handed

.

rotating-helicopter blade in

Cartesian coordinate system

(X,y,z) h which the z-axis coincides with the axis of rotation of
the rotor system and the x-sxis is in the direction of the unreflected
longitudinal blade axis is used.. The x- and y-axes rotate with a blade .
about the z-axis. The flapping hinge axis of a blade, which is assumed
to be in the plene of rotation (x,y), is considered as offset by a

.

distance el from the axis of rotation and inclined at an angle 53

—.—— _.. _ _. -. . -:,y -n= -— --- -,-.. .- ...... , ,,-- .-: .. . . . . ---e -------- -, -.,-.-.; ,.. ..—.
. ..’. . . . .
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to a line parallel to the y-axis (see fig. 1). The lagging hinge axis,

which is assumed to be h the vertical (x,z) plsne, is considered to
be offset from the flapping hinge axis by a distance e2 and inclined

at an angle 51 to a line parallel to the z-axis (see fig. 2).

Lagrange equations.- The Lagrange equations of motion can be

expressed in general as follows:

(1)

where t is time, T is the kinetic energy of the system, qi is a
generalized coordinate, end Qi is the corresponding generalized force.
The dot indicates differentiationwith respect to time..

The kinetic energy of a moving blade is given by

where

●,

J
2

T1 (
. ,2=- ?l&+f+z

2
)

S1

+= i + (SZr)x

.
?=

}
$ + ($k)y .

Z is the length of the blade measured from the

ds (2a)

(a)

lagging hinge, S1 is

the distance of the innemost blade section from the lagging hinge, m
is the mass per unit length of a blade, ds is a blade-length element,
o is the angular velocity of the rotor system, r is the distance of
any point of the blade from the axis of rotation, and (Or)~ and (Qr)~

denote components of the linear rotational.velocity of a blade element
in the x- and y-directions, respectively.

The position of a blade sfter lagging and flapping cen be determined
as follows:

First consider a rotation of magnitude C5 about the lagging hinge’

axis. ‘lhisproduces a ch~ge of pitch (Ae)l of qi~de

(3)

. . .. . . — —.,. —. .—— . ..-. —... -—. ——--— .—. —
..--. ,. ,.. - ,
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Moreover, the component ~ of rotation about an axis parallel to the
z-axis (OD in fig. 2) has the magnitude

pt&cos ~ (k)

Let the blade now rotate with an

the inclined flapping axis. TQen the

due to this rotation is the component
blade axis (OC in fig. 1). ‘Thus

emgular displacement of j35 about ~

additional pitch chsnge (Ae)2

of rotation about the deflected

.

Moreover, the compodent ~
axis (Allin fig. 1) normal
iS givenby

B

\
(=M)2=135 SiIl(~- k3] (5)

of rotaticm of the blade about a horizontal
to the deflected,blade axis (OC) after lagging

= % Cos (53 - g) ‘ (6)
.

The coordinates of a point P on the longitudinal axis of a blade at
a distsmce s (fig. 1) from the lagging hinge axis can be expressed in
terms of the “flapping” and “lagging” displacement-components j3 and ~
by the following expressions:

p Cos 53
x= el+scos~cos~+e2cos.

C+3 - c) 1. .
Y= -s Cos J3Siq g

8

j3 Cos 53
z =ssin~+e2 sin

COS(53 - ~) -1
(7)

1

The velocity components at any point of a blade which are due to
the rotation of the rotor system can be expressed as follows (see fig. 3):

(S2r)x= -Or sin $ = -QY .

● .
(S2r)y=“& cos fi= Ox

}

where x and y are’given by equations (7).

\

!

.— -.. .-— -. —.= -, :--- ..-— ---
.,, .- . ,.-. ,. -- —-- -- - :.: . .. .

- .- ;. . . .

(8)
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By considering f3 and ~ as the two generalized coordinates,
equations (2a), (!i%),(7), snd (8) maY be s@stitited tito e~tion (1)
to give the left side in terms of p, ~, and time derivatives thereof.

.

Generalized forces.- The generalized forces Qi here are due to
the aerodynamic and weight loads. The force Qi (here Qc’ aud Q~)
is defined by

J1z
x= pxds -

S1 ,

(*)

.

the aerodynamic plus weight loads per unit

blade length in the x-, y-, ‘andz-directions, respectively.

From equation (ga) it follows that

ax by az
. c$. xz+Y%+z&

Q[ ‘% +Y$ ‘z%I

(lo)

The derivatives
ax ax
~, ~ and so forth can be determined in terms of f3

and ~ by means of equations (7).

Lift loads.- The lift loads,.based on quasi-stationaryflow, can
be found from the three-dimensionalKutta-Joukowski theorem:

.

.

.— - ------- --—— .—— - —- ——. —. ——--—- —---- .. .—— -— -- — —.-—..-., .,-
*

.“’. .,-.”-
. . ... .



.

10 WA TN 2226
.#

where p is the density of the flui~metiiuni,~ is the vector of
the resultant inflow velocity, end I’ is the circulation vector~ The .

velocity components in hovering at any petit of a blade can be expressed
as:

.

(12)

V~=-Wi-2
J.

where Wi is the induced downwash at the rotor, while x, y, and z
can be put in terms of B and ~ by means of equations (7). The
induced downwash is here assumed as constsnt throughout the rotor disk
in hovering. According to the simple momentum theory, it can be calcu-
lated from the expression:

.
Wi

i

w-—=
W. 2YrR2P&Z2

(13)

where W is the gross weight “ofthe helicopter end R is the tip radius
of a blade.

By considering the circulation vector ,~ to coincide with,the
deflected longitudinal blade axis and to have a magnitude determined by
the Kutta condition of finite trailing-edge velocity in two-dimensional
flow, the lift loads can be derived in a manner similar to that given
in detail in reference 1. By assuming ~~ ~~ e (the blade angle),
and wi/$U to be first order small, the following e~ressions for the
lift load components per unit length of a blade can thus
second-order quantities:

Lx’ = Pfi@(~+e2+s)p[~(e2+s) +wi -~(e~+ *+ s)O]

be derived to

1
Ly’ = pfic[B(e2+s)+wi][P(e2+s)+wi-~(el+e2+s)G]

{[ 1(14)
Lz’ = WC J@2+s) +wi]&@(el+e2+s)] - Z%el.+ez+ S)e -

1} I

S22(e1 +ez+s) [l(el+eq -(el+ez+s)e
,, J

w~ere c is the chord length of a blade section. ●

-— ., . -,.”. ., .”.:... ... -. ——.,-,. -.. . . ,- . ,. ,.. .. - . . .
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Drag loads.- The expressions for the lift load components include

e~ect of induced drag, since they include the effect of downwash.
profile-drag loads can be determined from the following expression
the profile drag per unit len@h of ablade:

where cd. is the profile-drag coefficient of.a blade section end Vns

is the resultsnt inflow velocity in the plane of the blade section. By
considering Cdo as constant and the resultant drag force as acting

parsllel to the resultant inflow velocity, the following expressions,
with cd. considered as first order small, are obtained for the drag

load components to second-order quantities:

d 1 pccdo~(el + ~ + ‘)[wi + &e2 + ‘)]Oz ‘-~
J.

Weight loads.- The unit weight loads of a blade act in the

z-direction snd may be expressed in the form:
:

P~=-w ‘

where’ g is the acceleration due to ‘gravity.

Equations of motion.- The tot~ pitch angle of a blade section

after deflecting is, according to relations.(3) to (6), given by

(16)

(17)

.

(18)

where e. is the initial, or design, bl~e angle %efore flapping or -
lagging. This aqmession for f3 must be mibstituted in equations (14)
for the lift loads.

The equations of motion of a blade in flapping and lagging can now
be written eqlicitly in t~rms of ~ and ~ by substituting into
equation (1). By putting 1

g = go + t(t)”.

*

. . ---- , -. — — ——-. ---- _____ ___~-..—-.--—— -—---- --—— ,,, .—. .,,. , . ..- .,. - ,.-
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where PO and co denote the vsl.uesof ~ and ~ in the steady

state, while B(t) and Z(t) denote small deviations from the steady
state, and observing that the steady-state values must alone satisfy
the equations of motion, the following nondimensional equations are
obtained for the values of PO and ~ and for the vibrational

deviations ~(t) and ~(t):

(lga)

.

.

“A

f&+L1)+~L2 ~
E

+ g HL3+ F(tan 53 - {0 sec253)L4 +

@5 + (tan 61- POsec%3)L4] = O

where

,,

“

.

.
#

(20b)

,

_- ..-- .— --- .. .. .. --- -—. . ----- . —— -- --- —-,.. . . .
.--, ... - . .. . . ., ... .
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~ smd Co refer to the mass
blade section, and 80 is

of e. is given by:

90 =00+

_h deriving equations
and ~ (not- P. and go)

‘the

WATM 2226
#

and chord,-respectively, of the innermost

steady-state value,of 0. The value . .

(po tan Q- 63) - ~otsnbl ‘“ (22)

(20a) and (20b) the vibrational deviations 1
have been assumed sufficiently small so that—

only first powers of ~ and ~ may be retained.

The condition that the lift load support the gross weight of the
~ helicopter in hovering leads to the following expression f~r Je.:

..

.

where n is the number of blades in

$2+ & d~
‘,

I
=.

the rotor system.‘ ‘

Steady-state values of ~, ~, and 9.-,The qteady-state equa-

tions (19a), (19b), and (23) can be solved for the values of ~d, (.,
and. 00 as follows. Equation (23) maybe solved first for e. with
the higher-order term (h .Po~o) there neglected. >me VdXe of (0 can..
then be obtained fra equation (19b) and the value Of P. ‘cm subse-
quentlybe determined from equatim (lga). A second approximation for
the value of f30 can now be calculatedly inserting the valtiesqf P.
and to, thus obtained, into equation (23); Second approxima~ions

for Po end go, by using the new value of 8., can then be determined

from equations (lga) and (l$h). It will usuallybe found that the
. second approximations in this iterative procedure are sufficiently
accurate for practical purposes. The value of the design angle ‘eo can

be found from the relation .,

. .

eo=eo- J30tan (g. - 53)+C0 tapbl .

.

., ,... -— ----- -:.-:. ””-- -—-. . . . ..— —— —.. . .. . ..- -,
. . . ...> . . . . . . . . . .. ”,,



,

.

NACA TN 2226 . 15

It may be noted here that’the values of Po, ~o, &d e. are all

independent of the inclinations 81 and 53 of the hinge ues.
the appropriate velue of the design blade angle .130 does depend

vslues of 51 and 53.

Dynsmic equations - physical Si@ficance. - Equations (20a)

However,
on the

and

(20b) are the equations determining the characteristics of the small
vibrations of a helicopter blade’about the state of static equilibrium
given, as explained above, by equations (lga) and (lgb). The physical
significance of each of the terms in .equationss(20a) and (20b) is as

follows. The terms proportional to ~ and ~ represent the inertia .
loads per unit of length acting on a blade. The term proportional to ~

in equation (20a) represents primurily the aerodynamic dsmping load
caused by a‘change of angle of ~ttack induced by a vertical velocity $
of a blade element. The term @Il?6 in equation (20a)‘is due to the

centrifugal loads, while the term ‘@7 represents the lift load. The

&t~~ ~ 1 in equation (20a) represents a lift load ccmponent (including

the ef$ect of downwash) caused by a laggbig velocity ~, whfie the

temn &F2 represents a Coriolis load. The term pnportional to T

in equat~on’(’20a)is a lift load. .

~L2 is proportional to the profileIn equation (20b), the term ~

drag of a blade section. The temi &L5 in this equation represents

the ~entrifugal restQring force in lagging, while the term proportional
to ~L4 represents an induced drag, due to the downwas~ Wi. The

a
term 92 re&wents a Coriolis load while the term’ &l is an aero-

dynamic load. Finally, the &rm ‘@J4is an aerodynamic load due to
the downwash wi. ,

Equation (20a) corresponds primarily to the flapping oscillations,
while equation (20b) corresponds primarily to the la@ng oscillations.
It will.be obsezved, however, that these equations are coupled with each
other. It may be further ~oted that all of the coupling terms in lagging

(proportionalto F and P in equation (20b)) have magnitudes which
are at most first order small but that in flapping there is a ftiite-
order coupltig term proportional to tan 51. Consequent y, inclination
of the verticel (lagging) hinge tends to produce considerable coupling
between flapping snd lagging.

‘,

---- . . ..- -—---- .. ..-. ------- ..--,.- ..-. ———- -.-- -- --- ——---.— ———-— - —--
,-, . . . .
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GENERAL SOLUTIOMS FOR STABILITY AND VIBRATION CHARACTERISTICS

The genersl solution of the flapping and lagging equations and the
general implications of this solution are given here. In addition,
stability conditions are shown and discussed.

Basic solution.- Equations (20a) and (20b) are a system of linear,

homogeneous, differential equations with constant coefficients. The
solution of this system can be obtained by setting

.

,

where A and D are real
a real or complex constant

The following linear,

(24)

or complex constants (amplitudes) and p is
(“frequency”)●

and D are obtained by substituting
and (20b):

( ) [(
Aq*4+qF3+~6+F7 +Dq F1

simultaneous, algebraic equations in A “
equations (24) into equations (20a)

.

1-~2)+F5+F&~1 = O (25a)

,

“

[( )]A q HF2 + L1) + (tan 53 - (0 sec2b3 L4 +

[
Dq2HL3+ q++m5+(tan5p 1130sec253)L4 = O (2%)

where q = p/a
.

For the existence of a nontrivial solution to
the determinant of.the coefficients of this system
Expsnding this determinant and setting it equal to
following quartic equation (to second powers of small-order quantities)
for the complex dimensionless frequency q:

,

the above equations“
must vanish. ●

zero leads to the

a4q4 +a3q3+a2q2 +a~q+ao=0 (26a)

.

.— .— —-—. ----—- ——-. --- -_...T:.,.. .--- ——— . .
..:. -..... ....-., .-... ..
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where

a4 =

a3 =

%?=

9=

.4)=

H2F4L3

Hp4L2 + F*3)

(Imp - %) (W2 + % )

(HJ?2- )F1 L4 tai 53 -

(W6 + ‘7)[m5 +(-

●

S’C2’JLJ + ‘2(!6”+ ‘7) + “

(~2 + %)@~ + F8 tan 53)

% - J]
130 see% L4 + ‘

[
L4 F8 tan 51((.”sec%~ - - tan 83) - F5 tan 531

17

(26b)

.
.

Frequency and damping characteristics.- Equation (26a) determines
four values of q: If these values constitute two pairs of complex
conjugate roots, then they can be interpreted physically as follows.

If qL -R t b, where R and u are real positive quantities,
then ufl Is the natural frequency of oscillation, while @ is the

logarithmic decrement, that is, the natural logsrithm of the ratio o?
amplitude of oscillation at any time to the,amplitude one period or
cycle later. If R is negative; then the oscillations will increase
in smplitude with time and the motion will.be unstable. A negative
real root for q indicates a nonoscillating subsident motion, which is
stable, while a positive real root,indicates.anonoscillating motion of
steadily increasing amplitude, which is unstable.

Equation (26a) can be solved exactly for the values of q by ,
means, for example, of Ferrari’s method (reference 2, pp. 51 and 52).
“For purposes of a quicker, but approximate, calculation, the following
method may be used.

,.

.- . . . .. .-. .. —-, ----------- .. - --—- ---- -.. —-—..,- ., -,— -—— . --- .
. . . .
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Let a first.approximation

NACA TN 2226

to a pair of roots of equation (26a) be
that which would b=-obtained in flapptig if there is riocoupling with
lagg+g. If one of these roots is denoted by qfo, then it follows from

equation (25a) with D = O that:

qfo=~,im (27)

A second approxhation qfl to equation (26a), by using Newtonis method s

(reference, pp. 96-97) @th ~. as first approxiniationwhether it is

real or complex, will.then be:
.

)1+78ten81!!fo2F~+Ll+(t=53-L06=%3L4
(28)

q#L3+qp&+~+L4 tantil) 29ff14+F3)-F8~z+~*61

Simflarly, a first approximation to the second pair of roots qzo

of equation (26a), obtained by considering lagging without co@ing to
fla~-ing

A second

(equation (25b) Wifi- A = O), maybe as&med as ‘ - -

%? * L2 2 ~5 + (t= % - Po sec253)L4!lZo‘-—2HL3 (( )~- HG3 ‘(a)

approximation,by Newton’s method, will be
.

qzOF1-~E+~y qzom2+% +L4*8~+F8teu81 qo2F2+~ + t13nFi3-[osee%
q~ = 910+

(:[*:+qz$:m6+q)(2qm3 +&) -!’JF2+LJ’J %
(30)

Equations (27) and (29) may be interpreted physically as giving
the oscillation characteristics in flapping and lagging, respectively,
if there is no coupling between these motions. Equations (28) and (30)
give a first approximation to the effect of the coupl%g on the dampi~
and frequency characteristics of the correspondingmotions. “Ifthe
corrections indicated by equations (28) and (30) are found to be rela-
tively large, then it is suggested that the roots of equation (26a) be
calculated%y Ferrsri’s method.

.

Corresponding to any root of equation (26a), e ation (25a) or
equation (25b) determines the value of the ratio Ar , whose absolute
value gives the ratio of the flapping emplitude to the lagging ampli-

tude. IIAIf there is no coupling, then ~ = w for,flapptig, while

IIAD = O for Ug@ng. A complex value for A/D indicates a phase

.&fference between the component flapping end lagging motions.

—— --- .,—-.. ,. ~.— — - .“
. . —-’ .- . . :, .-., . ..” —“:-

~.. . . . .T . . ,.
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From equations (27) md (28), it will be found that in ordinary
cases the angle of inclination 51 of the lagging hinge axis has rela-

tively little effect on the demping and frequency c~cteristics of the
motion of a blade corresponding primerily to ‘flapping. The angle of
inclination 53 of the flapping hinge exis has, however, an importaut
effect on the frequency characteristics of the primarily flapping motion
of a blade. Increasing 83 negatively diminishes the natural frequenty

. in ~apping, since the total effective restoring force (proportional
to ~ in equation (20a)) is diminished. It maybe noted that a nega-
tive 53 indicates an inclination of the flapping hinge axis such that

a positive (upward) fla ing motion produces an increase in the blade
Yangle e (cf. equation 5)). For sufficiently large negative vslues

of 53} in fact~ the restoring force becomes negative and an unstable
motion results, evidenced by at least one positive real root for q.
Physically, the reason for the decrease of restoring force in flapping
with increasing negative values of 83 is that a negative 53 t-

to produce an aerodynamic (lift) load component opposing the centrifugal
restoring force.

From equations (29)”end (30) it willbe found that increasing the
angle 81 positivel# increases the natural frequency of the motion

corresponding primarily to lagging but decreases the daqping factor
(i.e., tends tomske the real part of q positive). Thenaturalfre-
quency of the primarily lagging motion is ouly slightly affected by the
angle 83. However, the demping factor in lagging is considerably

influenced by 83 (cf. numericel examples discussedti a following
section).

it
to
to

of

From equations (27) and (29), as well as equations (28) and (30),
will be found that, in general, oscillating motions corresponding
flapping will be much more heavily damped than those corresponding
lagging, since the negative reel parts of qf will be of higher onler

magnitude than those of qz, .

The effect of offset, expressed quantitativelyby’the parameters 61
and G2, is included in the general solutions given here. It will be

found from equation (~), in fact, that the chief effect of small off-
sets is an increase in the uncoupled lagging frequency with increase in
the value of El + ~2.

The coupling effects, as given approximately by equations (28)
and (30), are much more important in the lagging moticms (equation,)

1A positive value of al means that the lagging hinge axis is
inclined such that a lagging (retreating)motion of the blade produces
a decrease in the blade angle 0 (cf. equation (3)).

.

. . .. . . -.-—— - -.,—..-——-...——.:— - -- ~—=. =-— — —.-. -. ———- . ---,.. ., ,- ...
‘. ~.-.
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than in the flapping motions (equation (28)). 5s Is dye to the fact
that, although the corrections due to coupling in both of these equa-
tions are-at most first order small, the magnitude of the’uncoupled
lagging complex frequency qZo (especially its real part) is also small;

.

e
“.

,

consequently, the correction in lagging is
relatively important effect of c:upling in

I!(the relatively large value of ~ order

spending to qz when 81 is not zero.

relatively important. The
lagging is also eviddcedby

of magnitude of unity) co=- .

d ,,

General stabflity criterions.- E one is interested only in the ‘
stability of the motion of a helicopter blade, then it is not necessary
to determine the actual values of the four roots-of equation (26a).

The general condition that the motionbe stable is that all of the
coefficients“ofeqyation (26a) have the same sign (viz, positive), while .,
also (reference 3)

% (%233- a1a4) - a&32 ZO (31a)

since ah and a3 are

bilitythat

necessarily positive, it is necessary for sta-

ag >0

al >0 h (31b)

a. >0 J
Conditions (31a) and (31b) together are necessary and
stability.

For purposes of a quick, but rough, calculation,

sufficient for

the stability
criterions for the uncoupled flapping motions may be considered. From
expression (27) for qfo, this condition is found to be approximately:

sec263 (32)

.— . -- ..— — -. . . ., .-: --- --—---- . . .——
. . . . . . . . . . .,
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M actual casesj this condition will usually be satisfied for 8 >-
2

450,
approximately. Condition (32) may be considered as an approxima ion even
with coupling taken into account, since, as noted above, the effect of
coupling is relatively small illflapping. It must be observed, however,
that inequality (32) is only a necesssry but not a sufficient condition
for stability of the entire motion of a blade, since it does not incl~”
the motions corresponding primarily to,lagginge

A numerical example is given here to indicate the type of results
which maybe obtained in practice and to illur$rate the method outlined
in the previous section for ftiding the oscillation characteristics of
a rotor-blade system. The inclination of the lag&ing hinge axis 81

will first be permitted to assume a range of values, while the flapping
hinge axis will not be inclined; that is, 63 = 000 Then the flapping

hinge axis will be inclined at various
T

es 53 while the lagging
hinge axis inclination 51 is fixedat O . Finally, the case of

inclining both hinge axes s~taneously will be considered.

The following data for-a typical helicopter sxe assumed:

Gross weight of helicopter, W, poun”ds . : . . . . . . . . . . . . 3000
Nuniberofrotorblades,n . . . . . . . . . . . . . . . . . . . . . 3
Angular speed of rotor system, 0, radians per second . . . . ~ . . . 25
Tipradius ofarotor,R, feet . . . . . . . . . . . . . . . ...21.5
Lengthofblade proper, t, feet . ; . . . . . . . . . . . . . ...20
Lengthof eccentricity, el,feet . . . . . . . . . . . . . . . . . . 1
‘Lengthof eccentricity, e2, feet . . . . . . . . . . . . . . . . . 0.5
Chord width atroot, co, feet . . . . . . . . . . . . . . . . ...1”
Airfoil section . . . . . . . . . . . . . . . . . . . ..-. .Clark Y
ZYofile-drag coefficient, cm . . . . . . . . . . . . . . . . . 0.01

.

The structure of the blade consists of a tubular steel spar with plywood
ribs flanged on and plywood skin attached to them. The diameter of the
spar at the-root is 0.15 foo%sand the wall thickness is 3/16 inch. The
effective area of the wood is assumed as four-tenths that of the steel>
and the density of steel is 15.12 slbgs per cubic foot while the density
of wood is 1.5 slugs per cubic foot. It will be further assumed that -
the blade has a constant cross section.

c m-= —=
co mo

Therefore,
.

1
.

. . . ..—. --=— .. —..- ---- ---- .—— ,---- - -.. —.. -—— .=...- -— --- — -----
. . ..,. . . . . . . . .“.
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*

It is necess~ to determine the values of H, M, and wipt ftist

in order to obtain the steady-state values of ~, ~, and e. By substi-
.

tuting into equations (13) and (21a) me obtain

.
● H= 0.774014

M= 0.002576

Wi—= 0.04166501
.

The values of j30, co> ~d e. can now be found by the iterative

procedure outlined in the section “Basic Equations.” The following are
the values obtained by approximately solving (i.e., neglecting higher-
order terms in PO and co) equations (23), (19b), and (19a)~

respectively:

e. = O.=583

co= 0.051955

Po = 0.070968

A second approximation for 00 is now
. above values of PO and Co into equation

obtained by substituting thk
(23) and n-w retainhg second-

order terms. By using this new value of eo, second approximations

for co and PO are obtai&d from equations (19b) and (19a), respec-
tively. T& following are the values of the second approximiAions:.

e. = 0.u?2969

b = o.05a62
.

.

$0 = O.on369

It can be
accuracy>

seen that the second approximations here give sufficient
since they differ little from the first approximations.

. *

.
-—_— -, — .- .=,. 7. -. -,... --— —----
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It is now possible to calculate the parameters
given by equations (21b). Thus, it is found that

Fl = 0.055504 F5 = 0.002062 - 0.022350 sec283

F2 = o.04g364 F6 =0.385102

F3 = 0.294369 F7 = 0.001507 + 0.313161 tan 53

F4 = 0.358958 F8 = 0.313162

. 23

in terms of 53

- 0.016335 sec%3

L1 = -0.006139 ‘3 ,=0.333333

L2 = 0.000875 L4 = 0.015451

The values of
lagging (qfo and

equations (27) ha

LJj= 0.037500

the uncoupled complex frequencies in flapping and
qzo, respectively) are fitst obtainedby solving

(29),-respectively. Then the first approximation to
the coupled frequencies ~qfl and qzl, respectively) of the coupled-

oscillations is found from equations (28) and (30). In addition, the ‘
quartic equation (26a) has been solved for q by Ferrari’s (exact)
method to test the accuracy of Newton’s method as it is applied here for
finding the approximate values of the coupled complex frequencies.
Finally, the ratio of the flapping smplitude to the lagging amplitude”
A/D canbe found from either equation (25a) or ‘(25b). It shouldbe
mentioned here that the ratio A/D serves as a check, since a partic-
ular value of q should yield the same result from both equations (25a)
and (25b). It is sometdmes necessaryto adjust the root slightly in
order to satisfy both equations.

Tables I and II contain the ValUeS of ~o, ~ls ~ (~ct)>

and A/D) md qlo> qZl, ql (-et), and A/D, respectively, when 81

has a range of values and 53 = OO. Tables III and IV contain the same

information for 81 = 0° anda range of values for 53. The results

given in tables V and VIwere obtainedby inclining the lagging and
flapping hinge axes simultaneously.

The results of the numerical examples given in tables I to VI
illustrate the general conclusions reached in the preceding section.
For example, the negative real parts of the flapping complex frequencies
are in all.cases much greater than those of the lagging complex fre-
quencies, an indication of much greater damping of the flapping motions
than of the lagging motions. Table II illustrates how increasing 51

.

—.- . —.-— - . ..——. —-— -——T- ..---: - —..-..
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.algebraically.adversely affects the stability of the lagging motions,
since the real pert of qz becomes less and less negative’and-even

positive. Increasing 51 negatively, on the othei hand, has a bene-

fictil effect on the damping of t~ kggi% motions. From tables I
and 11, in fact, it maybe seen that the case 53 = 00, al = -450 is

quite satisfactoryfrom a stability viewpoint, since the damping factor
for the lagg~ oscillations is over ten times as great as when 51 = 0°,

while the flapping oscillations remain stable. The increase of the
-natural lagging frequency \imagin&ry part of. qzj with algebraically .

increasing 51 is also shown here. As evid.encedby the values of A/D
in table 11, considerable flapping motions accompany the lagging motions,
unless 51X OO. Table I tidicates the rather qmall effect which an

inclination 81 of the lagging hinge axis has on the flapping .oscil-

lation characteristics.

Table In illustrates the increase of flapping frequency with ~ge-
braic increase of the angle G3. It also shqws the danger of insta-

bility when 63 has an algebraically low value. Here, for 53 = -45°, -

the positive real root for qf indicates tistibfiity. Table m sh~s
the relatively little influence of the inclination 53 of the flapping

hinge Axis on the natural lagging frequencies. It iS interesting to note
here, however, that inclining the flapping hinge sxis at an angle of

’300 has a beneficial.effect on.the stability characteristics of .63=-

t~ lagging motion, since the real part of qz then ks a ne@tive ~lue

of at least three ttmes that of ql corresponding to the other values

of 53 considered here. However, it maybe observed from table III

that, in this case, the flapping frequency (imaginary part of qf) would

then become dangerously low. ,.
.’

Of the three cases considered in tables V-andVI (al ~ 0°, 53 ~ 00), ,

the case 81 = -30°, 53 = 30° appears to be the most suitable from the

point of view of stability characteristics. The case of 51 = 30°,
53 = -300 evidently leads to.instability$ since the real.P* of qz

is positive. Mqreover, the case 81 = -30°, 83 = -30° Biv?s a slight

tistibfiity in flapping (~ -S a S- psitive red ~ue).

A comparison in the tables between corresponding values
of qfl~ with qf, md qll with qz, shows that in most of the

numerical cases treated kre~ Ne~on*s ~thod (e~tions (28) ad (30)) , ~
gives fairly good second2 approximations for the complex roots of

% first approximations,nsmelythe uncoupled complex frequencies,
are givenby equations (27) and (2g).

,

,
. 1

. —-— ..- - ..= .- -—.— -.v-—
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equation (26a).
gave unreliable
33 . -30°. The

from the tables
or qz.

25

The only cases here in which this second approximation
results are: 51 = 0°, 53 = -45° and 51 = -300,
effect of coupling on the complex frequencies can be seen

by comparing qfo tith qfl or q, and qzo tith q21

CONCLUSIONS
. /

From an investigation to determine theoretically the characteristics
of the rigid-body oscillations in hovering of helicopter blades with .
inclined and offset flapping and lagging hinge axes, the following con-
clusions are drawn:

1. The frequency and damping characteristics of the (in general,”
coupled) flapping and lagging oscillations of a
calculated directly either by solving a quartic
sionless complex frequency or by using a second
roots of this quartic.

2. From the solutions it is-found that the
negatively the flapping (horizontal) hinge axis

helicopter blade can-be
equation for the dimen-
approximation for the

.

main effect of incltitig
is to diminish the natural

flapping frequency by diminishing the total restoring forces in flapp”~.

3. hcltition of the flapping hhge axis also has an hportant
effect on the damping characteristics of the lagging motion, as
evidenced by the numerical example treated here, which indicated an
inclination of -30° to be a desirable value from this viewpoint. This .
value, however, gave a dangerously low natural flapping frequency. ,

4. ‘I%echief effect of inclining negatively the lagging (vertical)
hinge axis is to decrease the natural lagging frequency but to increase
the damping factor,.and therefore the stability, in lagging. Inclination’
of the lagging hinge axis increases the coupling between lagging and
flapping and leads to large flapping motions accompanying the lagging
motions.

5. The main effect of a slight offset of the hinge axes is an
increase in the natural lagging frequencies.

Polytechnic tistityte of Brooklyn
Brookl@, N. Y., October 24, 1949

. --- -. . ----- --— -— - ——---- - .-... —______ _.-,___—:-..-——..——— -- .. . . . -
.“. .,

.. ... .



26

1.

2.

“ 3=

. .

r?AcA~ 2226
.

RmmlumcEs .

Reissqer, H., and Morduchow, M.: A Theoretical Study of the Dynsmic
Properties of Helicopter-Blade Systems. NMCA TN 1430, 1948.

Dickson. Leonard tiene: New First Course in the Theory of Equations.
John &ley & @s~ Inc., 1939, pp. 51-52S

V. K&m&, Theodore, and Biot, Maurice A.:
Engineering. McGraw-Hill Bobk Co., xc.,

.

.
.

96-97.

Mathematical Methods
1940, pp. 244-246.

.
.

.

.

in

,

.

.

. .
.

.— - -- -- , . , ---- _._., --. ——- - --
~... .- “., . . . ... .” .-



NACA TM 2226

TAB13 I.- VALUESOF qfO, q~, qf (=ACT), ANDA/D

WHEH51 E4SARA1’?QEOF VALUESAND 63=00

81 I I&g) (equat&n(~)) (equat% (28))I (ex%) 1’
A/D

w===
30 -.5297* 0.85961

0 -.5297* o.8596~

“30
I
-.5297* 0.85961

.45I-.5297* o.8596f

,
[

81

((leg)

45

30

0

-30

-45

., .

-0.6383* 0.93231

-.56m * O.mqi

-.5338* O.~L

-.481’8* o.82A.gi

--- * 0.83u

“0.5W * 0.90381

-.5630 * o.8816i

-.5255 &o.8515i

-.4795 i 0.8241i

-.4392 * 0.8091i

5.181~ 6.240i

4.904$ 6.187i

4.470= 6.127i

3%888* 6.zzL7i

3.z4 T 6.143i

TABIE II. - VALUESOF qzo, qzl, qz (-T)> ~ 4/D

27

qzo
(equation(2g))

-o.oo16g*o.4100i

-.oo169*o.3779i

-.oo169*o.32goi

-.00169*o.2714i

-.00169*o.~ggi

+
D.056n *o.3753i0.05435 *o.3845i

.031J7 *o.3638i .03151 *o.3660i

-.oo~i *0.33181-.oo~l *o.3Y6i

-.04303 kO.2576i
I
-.04303 *o.2576i

-.07733 * o.2052i -.07733 *o. 2051i

A/D

-0.9307*0.42281

-.5346 *o.2140i

.0631.2T o.04~i

.7447 T0.2&5i

1.302 + o.2896i

WEEE 133 HASARMWEOFVA LUESAND ~=0°

83
aeg) (equat%n(Z@) (equ9t% (28)) (&t) @

45 .o.5@7 * 1.3441

30 -.5=7 * 1.170i

o -.5297* 0.85961

-30 -.5297i o.2617~

-o.52TL* L 339i

-.5273 i 1.165i

-.5338 * 0.848M

-.4695 * o.1974i

-o.5271 * L335M

-.5274 * 1.1651

-.5255 + 0.85151

-.5093 * o.mog~

[

.U@ -.1817
-45

.1737

-1.m -1.222 -1.221

7.881T g.ok?i

6.444% 8.2871

4.470T 6.M28L

3.478T 1.033i

3.024

7.302
— — —
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(,

83
(aeg]

45$

30

0

-30

-45

—

qz~
I

ql~
(equetion (f+)) (equation (30))

1

-0.00M96+ o.3224i-0.004358* 0.32991

I-.oo16$J6* o.3268i -.004068* o.33121

I-.001696* o.32goi-.m~l * o~3g8i

“1-.001696* o.3268i -.02232 * o.3345i

-.00I.696i o.3224i -.04357 * o.3224t

(ex%)

-0.004360i o.3298~

-.o@165 * 0.331u

-.005891* o.3316~

-.02202 * o.3370i

-.007629* o.3597i

A/D

L07376T o.02336i

.05g07T o.02680i

.06w * 0.@713i

.08841T o.2408i

.2364+ 0.21861

II

% 83
aeg) (a.eg) (6KWL2R (2’7) ) I (equal% (28)) I (e%) I

A/D

30

-30

-30

I I I.-30 -0.5297* o.2617i -o.*n * o.5512i -0.6048* 0.4048

30 I -.%97 * 1.170i I -.5073* 1.144i I -.5055* l.lkgi

I 1{-.8179
-30 -.5297* o.2617i -.337k* o.o1268i

.01907

4.093T 2.M3i

6.206T 8.372i

1.997

5.260

I

TABLE vl. - mT,JJEsOF qzo> qzll qz (EXACT), AND A/D

WHEN81400 Am 53400

61
aeg)

30

-30

-30

83
(aeg)

-30

30

-30

qlo qz~
(equetion (29)) (equation (30)) (-q:t)

-0.001696* o.3760i0.0Ku8 * 0.3@81 0.07341* 0.35891

A/D

-0.6374* 0.83611

.

,

.

.

I I-.001696* 0.26871-.02806* 0.Z9&Z-.02598* O.!+@i
I

J@@ * O.lwi

-.001696* 0.268?1-.=73 * O.lmot -J-3a * 0:452= .04182T 2.1061

v

‘.
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Figure 1.- Blade configuration in plane (x, y) ofrotation.

●

.

I
.. . -- ——$ ----- —.--——- —-- -. ——-— ..--— — ---— —- — —-— -- ----

. . .
.,.



30

z
.

#

ID
1’
I
I
I

WA m ‘2226

.

Lagging
hinge axis

‘.

.,

I

-% 4-2

Fig&e 2.- Blade configurationinvertical
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Figure 3.- Rotationalvelocity $1r at a point of a blade (&ree -
dimensional tiew).
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